|
COINCIDENCE DES OPPOSES (oppositorum coincidentia)
Nicolas de Cues fonde sa réflexion sur un nouveau principe logique, la coïncidence des opposés. Comment en a-t-il eu l’idée ? Il en parle comme d'une révélation lors de son voyage en Grèce : « Je fus conduit – par, je crois, un don du Père des lumières de qui vient tout don excellent – à embrasser les choses incompréhensibles de manière compréhensible dans la docte ignorance, en dépassant les vérités incorruptibles humainement connaissables. » Ce principe a d'abord une signification mystique. Il est ce qui permet à la pensée de se dépasser, de passer de l'activité rationnelle à la vision intellectuelle pour rejoindre la vérité en Dieu. C'est au-delà de la porte des contradictions que l'on peut voir la vérité. La coïncidence des opposés est un principe qui permet de développer une logique anti-aristotélicienne, mais dont il faut bien délimiter le champ de validité. Le Cusain considère que la coïncidence des opposés doit être différenciée dans trois champs : 1. dans le domaine des connaissances qui relèvent de la raison, c’est-à-dire sur les objets finis, on conserve le principe de non-contradiction. 2. dans le domaine qui relève de l’intellect, c’est-à-dire qui envisage un tout, équivalent de l’univers, on pratique la conjonction des opposés ; dans cette conjonction, les opposés restent opposés sans disparaître. 3. enfin, dans le domaine du divin, c’est-à-dire l’infinité, se réalise vraiment la coïncidence des opposés. Cette coïncidence des opposés est bien autre chose qu’une simple concession ; c’est véritablement un postulat fondamental et en même temps une arme redoutable qui sert à résoudre quantité de problèmes. Elle n’est pas une simple négation du principe de non-contradiction, mais elle en est le dépassement nécessaire en cas de besoin. C’est grâce à l’union des contraires que l’intelligence va pouvoir surmonter les obstacles car ce principe est inscrit dans les choses mêmes. A quoi sert la coïncidence des opposés ? C'est une nouvelle méthode, qui va permettre de résoudre quantité de problèmes dans divers domaines. Le principe de non-contradiction empêchait de concevoir la pluralité des mondes. N. de Cues lève cet interdit. En esthétique, la coïncidence des opposés permet d'analyser l'harmonie des contraires, comme la lumière et l'obscurité, le son et le silence. En mathématiques, la coïncidence des opposés lui permet de réduire le courbe au droit et d’espérer résoudre le fameux problème de la quadrature du cercle. La coïncidence des opposés peut également être mise au service de l'interprétation des Ecritures. Pour donner une idée de cette connaissance obtenue par l’intelligence, Nicolas de Cues utilise l’exemple des mathématiques. Il observe que les mathématiques, sciences rigoureuses qu’on ne peut suspecter d’irrationalisme, connaissent elles-mêmes une transmutation de leurs lois lorsqu’elles abordent l’infini. Tant que l’on demeure dans le domaine des figures finies, les mathématiques sont rationnelles et s’appuient sur le principe de non-contradiction, mais dès que l’on infinitise les figures, les mathématiques deviennent intellectuelles et sont amenées à pratiquer la coïncidence des opposés. De docta ignorantia, §§. 12, 24 De visione dei, §§. 42, 53, 101 Complementum theologicum, §. 13 |